0040-4039/78/0522-1901 \$02.00/0

MENSCHUTKIN REACTION STEREOSELECTIVITIES OF NICOTINE AND RELATED COMPOUNDS¹

Jeffrey I. Seeman*, Henry V. Secor*, Jerry F. Whidby and Ronald L. Bassfield Philip Morris Research Center, P. O. Box 26583, Richmond, Virginia 23261, USA

(Received in USA 13 February 1978; received in UK for publication 3 April 1978)

Recently we reported that iodomethylation of nicotine (2) led to the formation of N'-methylnicotinium iodide (5, n=5) and N-methylnicotinium iodide (6, n=5) (Scheme I) in a ratio of $2.2:1.^{2}$ This example of competitive nitrogen alkylation was interesting in that iodomethylation of the nicotine analogue 3-N,Ndimethylaminomethylpyridine (7) resulted in the formation of only 3-N,N,N-trimethylammoniummethylpyridine (8).² The two major controlling factors in the Menschutkin reaction are nitrogen basicity and steric constraints in the transition state.³ Because the pK_{A} 's of nicotine and 7 are nearly identical, we suggested that constraining the aliphatic nitrogen of nicotine into a pyrrolidine ring caused steric inhibition in the transition states which lead to N'-attack.²

To further examine the stereochemical factors in nicotine alkylation, we have prepared⁴ three additional N-methyl-2-(3-pyridyl)azacycloalkanes (1,3, and 4) as shown in Scheme II and have examined their quaternization with CD_3I . This constitutes the first report of the alkylation stereoselectivity of either N-alkylazetidines or N-alkylazacycloheptanes.³

SCHEME I

Each compound was independently treated with CH_3I , CD_3I and ${}^{13}CH_3I$. The alkylation selectivities (Table 1) were determined by a combination of ¹H, ²H, and ¹³C nmr experiments.⁴ Assignments for the methyl groups were made in the following way. In all four cases, the pyridyl-N-methyl ¹³C resonance occurred at 71.9 ppm. A detailed NOE experiment on purified N'-methylnicotinium iodide allowed a definitive ¹H nmr assignment of the two N'-methyl groups.^{5,6} A correlation between these N'-methyl proton resonances and the corresponding ¹³C resonances was made by a comparison of the relative ¹H and ¹³C resonance intensities of the N'-methyl groups of 5 (n=5) and N'-methylnicotinium iodide obtained from the reaction of nicotine with CD_3I and CH_3I , respectively. The ¹³C methyl resonances of 5 (n=6) were assigned using the well-established relationship $\delta_{ax}-\delta_{eq}=-10$ ppm for piperidines.⁷ The assignments of the N'-methyl group resonance for 5 (n=4 and 7) were made on the consistent observation that the *cis* methyl resonance appeared more upfield than the *trans* in both the ¹³C and ¹H nmr spectra for all compounds studied.

Inspection of Table 1 clearly indicates a pronounced variation in both the ratio of N'/N attack and N' $_{cis}$ /N' $_{trans}$ attack. As with nicotine, 1, 3, and 4 all show competitive pyridine alkylation although the pK_{a1} > pK_{a2}. It is interesting to note that the azetidine 1 has the greatest percentage of N' alkylation. The relative rates of aliphatic nitrogen alkylation can be obtained from the N'/N ratios since the rate of pyridine nitrogen alkylation in these compounds is likely to be nearly identical.⁸ Thus, these N-methyl-2-arylazacycloalkanes exhibit the following relative N' iodomethylation rates: azetidine, 13.0; pyrrolidine, 2.4; piperidine, 1.3; and homopiperidine, 1.

Table l. ^a	Iodomethylation Selectivities and Spectral				Assignments of $1-4$.		
	Alkylation Ratios (13C Chemical Shift)						N' -
		N	N' _{cis}	N' _{trans}	PKA1	<u>N</u> '	N'trans
	լ CH3	1 (49.2)	8.3 (46.9)	3.5 (53.4)	8.07	11.8	2.4
Q I CH ₃	2 ~	1 (49.2)	1.4 (46.5)	0.82 (51.1)	7.9	2.2	1.7
	3~	1 (49.2)	1.1 (43.8)	0.11 (54.1)	8.04	1.2	10
Q LH3	4 S	1 (49.2)	0.35 (48.4)	0.56 (54.0)	8.38	0.91	0.6

^aAll alkylations were performed at ca. 25°C with ca. 0.8 equiv. iodomethane in order to avoid overalkylation. N and N' refer to alkylation direction. Es-timated error in alkylation ratios is 10%.

The ratio N'_{cis}/N'_{trans} for these compounds is dependent on both the equilibrium distribution of the free base configurational isomers and the relative rates of cis- and trans-alkylation and is described by the Curtin-Hammett approximation [N' cis/N' trans=K(k cis/k trans)].⁹ For compounds 1-3, cis attack predominates. It is tempting to suggest that the alkylation stereoselectivities of these 2-aryl substituted cyclic amines are controlled by the same steric phenomena, that being the interaction between the aliphatic nitrogen substituent(s) and the two rings. The equilibrium constant K (see Scheme I) reflects primarily the destabilizing interaction between the N'-methyl group and the ring constituents; the ratio k_{cis}/k_{trans} reflects a decrease in k_{cis} (relative to N-methylpyrroli-dine iodomethylation) due to the destabilizing interaction between the ring sub-stituents and the N^{δ+}---CH₃---I^{δ-} in the alkylation transition state. Since *cis* alkylation predominates, $K(k_{cis}/k_{trans})>1$ requiring $K>(k_{trans}/k_{cis})$. Thus, the already bonded N-CH₃ has a larger steric requirement^{9b} than $N^{\delta+---}CH_{3}---I^{\delta-}$. A simple Curtin-Hammett analysis cannot be made for compounds such as 4 where numerous conformations are reacting, but a pairwise analysis of the reacting nitrogen invertomers of 4 should be examined in light of the above inequality generalization.

A complete analysis of these systems requires a knowledge of the equilibrium distribution of stereoisomers¹⁰ and the reaction rate constant of each of these.¹¹ Kinetic studies and the preparation of the requisite labelled materials¹² are curcurently being undertaken.

References and Notes

- For the previous paper in this series, see E. B. Sanders, H. V. Secor, and J. I. Seeman, <u>J. Org. Chem.</u>, 43, 324 (1978).
- (2) J. I. Seeman and J. F. Whidby, <u>J. Org. Chem.</u>, 41, 3824 (1976).
- (3) For reviews of the Menschutkin reaction, see (a) J. McKenna, <u>Topics in</u><u>Stereochemistry</u>, 5, 275 (1970); (b) A. T. Bottini in "Selective Organic Transformations", Vol. 1, B. S. Thyagarajan, Ed., Wiley-Interscience, New York, N.Y., 1970, pp. 89-142; (c) Note that the iodomethylation of N-<u>t</u>-butyl-3-hydroxyazetidine was studied [E. L. McGandy, H. N. Berman, J. W. Burgnen, II, and R. L. van Etten, <u>J. Am. Chem. Soc.</u>, 91, 6173 (1969)] but the role of the hydroxy group in this case was unspecified [*c.f.*, R. Wylde, J. G. Saeluzika and M. Lanfumey, <u>J. Org. Chem.</u>, 40, 1308 (1975)].
- (4) Full details of the preparation of these compounds and the spectral analyses performed will be reported elsewhere. For the synthesis of azetidine l and analogous compounds, see H. V. Secor and W. B. Edwards, III, in preparation. We thank Mr. Dominick Quagliato for valuable technical assistance.

4 ²	Proton Irradiated	Proton(s) Observed 2 4 2' 5'				
N ² CH ₃ CH ₃	N' _{trans} (§ 3.27)	<1%	< 1 %	7.1%	5.1%	
N'trans N'cis	N' _{cis} (8 2.94)	8.5%	7.9%	<1%	5.9%	

- (6) Our results confirm those made previously for 2-phenyl-N,N-dimethylpyrrolidinium iodide based on chemical shift analogies [c.f., A. Solladié-Cavallo and G. Solladié, Org. Mag. Resonance, 7, 18 (1975)].
- (7) (a) A. J. Jones, C. P. Beeman, M. U. Hasan, A. F. Casy and M. A. Hassan, <u>Can. J. Chem.</u>, 54, 126 (1976); (b) E. L. Eliel and F. W. Vierhapper, <u>J.</u> <u>Am. Chem. Soc.</u>, 97, 2424 (1975) and references cited therein.
- (8) (a) H. C. Brown and A. Cahn, J. Am. Chem. Soc., 77, 1715 (1955); (b) 13 C chemical shifts are well-known to be very dependent on steric congestion. Our observation that the 13 C pyridyl-CH₃ resonances of 6 (n=4-7) are identical suggests that the no significant steric differences are caused by ring size variation going from the azetidine to the homopiperidine.
- (a) For a complete analysis of Curtin-Hammett/Winstein-Holness kinetics, including an exact solution, see J. I. Seeman and W. F. Farone, <u>J. Org. Chem.</u>, in press;
 (b) The same conclusion can be reached by an evaluation of the relative free energies of the two alkylation transition states. See also A. Solladie-Cavallo and G. Solladie, Tetrahedron Lett., 4237 (1972).
- (10) J. F. Whidby and J. I. Seeman, <u>J. Org. Chem.</u>, 41, 1585 (1976).
- (11) V. J. Baker, I. D. Blackburne and A. R. Katritzky, <u>J. Chem. Soc., Perkin II</u>, 1557 (1974) and references cited therein.
- (12) P. J. Crowley, M. J. T. Robinson and M. G. Ward, <u>Tetrahedron</u>, 33, 915 (1977)