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Recently we reported that iodomethylation of nicotine (2) led to the forma- 

of N'-methylnicotinium iodide (5, n=5) and N-methylnicotinium iodide (6, 

(Scheme I) in a ratio of 2.2:1.: This example of competitive nitrogen-alky 

lation was interesting in that iodomethylation of the nicotine analogue 3-N,N- 

dimethylaminomethylpyridine (7) resulted in the formation of only 3-N,N,N-tri- 

methylammoniummethylpyridine (8).2 The two major controlling factors in the 

Menschutkin reaction are nitrogen basicity and steric constraints in the transi- 

tion state.3 Because the pKA 's of nicotine and 7 are nearly identical, we sug- 

gested that constraining the aliphatic nitrogen of nicotine into a pyrrolidine 

ring caused steric inhibition in the transition states which lead to N'-attack.* 

SCHEME I 

l,n=4 
2, n = S(NICOTINE) 52 [N’,is ] 

3, n= 6( NhlETHYLANABASINE) 
4, n=7 

To further examine the stereochemical factors in nicotine alkylation, we 

have prepared‘+ three additional N-methyl-2-(3-pyribyl)azacycloalkanes (1,3, and 

4) as shown in Scheme II and have examined their quaternization with CD,I: This 

constitutes the first report of the alkylation stereoselectivity of either 

N-alkylazetidines or N-alkylazacycloheptanes.3 
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SCHEME It 

i, malonic acid, NH40Ac vi, [ClOHal-Na+/gylme 

ii, H+/EtOH vii, CHzO/NaBHsCN 

viii, [(CHs)zCH]zNLi, then H 
t 

iii, TsCl/pyr 

iv, LAH ix, NaBHsCN 

v, KOtBu x, CHzO, HCOzH 

Each compound was independently treated with CH31, CD31 and 13CH31. The 

alkylation selectivities (Table 1) were determined by a combination of lH, 2H, 

and 13C nmr experiments.4 Assignments for the methyl groups were made in the 

following way. In all four cases, the pyridyl-N-methyl 13C resonance occurred 

at 71.9 ppm. A detailed NOE experiment on purified N'-methylnicotinium iodide 

allowed a definitive 'H nmr assignment of the two N'-methyl groups.5'6 A cor- 

relation between these N' -methyl proton resonances and the corresponding 13C 

resonances was made by a comparison of the relative 'H and 13C resonance inten- 

sities of the N'-methyl groups of 5 (n=5) and N'-methylnicotinium iodide ob- 

tained from the reaction of nicotine with CD31 and CH31, respectively. The 13C 

methyl resonances of 5 (n=6) were assigned using the well-established relation- 

ship 6,,-6 ,o=-10 ppm for piperidines.7 The assignments of the N'-methyl group 

resonances for 5 (n=4 and 7) were made on the consistent observation that the cis 
. 

methyl resonance appeared more upfield than the truns in both the 13C and lH nmr 

spectra for all compounds studied. 

Inspection of Table 1 clearly indicates a pronounced variation in both the 

ratio of N'/N attack and N'cis/N' tram 
attack. As with nicotine, 1, 3, and 4 

all show competitive pyridine alkylation although the pK 
al 

>pK . it is inter- 

esting to note that the azetidine 1 has the greatest percenta:; of N' alkylation. 

The relative rates of aliphatic nitrogen alkylation can be obtained from the N'/N 

ratios since the rate of pyridine nitrogen alkylation in these compounds is like- 

ly to be nearly identical.* Thus, these N-methyl-Z-arylazacycloalkanes exhibit 

the following relative N' iodomethylation rates: azetidine, 13.0; pyrrolidine, 

2.4; piperidine, 1.3; and homopiperidine, 1. 
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Table l.a Iodomethylation Selectivities and Spectral Assignments of 1-4. ..,+" 
Alkylation Ratios (13C Chemical Shift) 

N 

2 
(4i.2) 

3 
(4i.2) 

4 
(4i.2) 

N’ cis N’ trans 

(4X) (533::) 

(4:::) 
0.82 

(51.1) 

(413::) 
0.11 

(54.1) 

0.35 0.56 
(48.4) (54 0) 

aAll alkylations were performed at ea. 25°C with 
order to avoid overalkylation. N and N' refer 
timated error in alkylation ratios is 10%. 

The ratio N'cis/N'trans for these compounds 

librium distribution of the free base configurati 

PKA, 
N' 
K . . 

8.07 11,8 

7.9 2.2 

8.04 1.2 

8.38 0.91 

N’ CiS 
N’ 

trans 

2.4 

1.7 

10 

0.6 

ea. 0.8 equiv. iodomethane in 
to alkylation direction. Es- 

is dependent on both the equi- 

onal isomers and the relative 

rates of cis- and trans-alkylation and is described by the Curtin-Hammett approx- 

imation [N'~~~/NI 
trans 

=K(k cis'ktrans)1'9 For compounds l-3, cis attack predomi- ..,s 
nates. It is tempting to suggest that the alkylation stereoselectivities of 

these 2-aryl substituted cyclic amines are controlled by the same steric phenom- 

ena, that being the interaction between the aliphatic nitrogen substituent(s) and 

the two rings. The equilibrium constant K (see Scheme I) reflects primarily the 

destabilizing interaction between the N '-methyl group and the ring constituents; 

the ratio k 
cislk trans reflects a decrease in kcis (relative to N-methylpyrroli- 

dine iodomethylation) due to the destabilizing interaction between the ring sub- 

stituents and the N6+---CHs---I&- in the alkylation transition state. Since cis 

alkylation predominates, K(kcis/ktrans)>l requiring K>(ktrans/kcis). Thus, the 

already bonded N-CH3 has a larger steric requirement gb than N6+---CHs---I&-. A 

simple Curtin-Hammett analysis cannot be made for compounds such as 4 where nu- 

merous conformations are reacting, but a pairwise analysis of the reacting nitro- 

gen invertomers of ,4 should be examined in light of the above inequality general- 

ization. 

A complete analysis of these systems requires a knowledge of the equilibrium 

distribution of stereoisomers and the reaction rate constant of each of these." 

Kinetic studies and the preparation of the requisite labelled materials" are cur- 

curently being undertaken. 
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